华南中天论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
华南中天论坛 门户 网络技术 大数据 查看内容

一文搞懂,Kafka 从初识到精通

2020-1-11 01:46| 发布者: 阿愿| 查看: 119| 评论: 0

摘要: Kafka是最初由Linkedin公司开发,是一个分布式、可分区、多副本,基于zookeeper协调的分布式消息系统。 一、Kafka是一个分布式流平台 1、流处理平台的特性 可以让你发布和订阅流式的记录。这一方面与消息队列或

Kafka是最初由Linkedin公司开发,是一个分布式、可分区、多副本,基于zookeeper协调的分布式消息系统。

一、Kafka是一个分布式流平台

1、流处理平台的特性

  • 可以让你发布和订阅流式的记录。这一方面与消息队列或者企业消息系统类似。
  • 可以储存流式的记录,并且有较好的容错性。
  • 可以在流式记录产生时就进行处理。

2、适用场景

  • 构造实时流数据管道,它可以在系统或应用之间可靠地获取数据。 (相当于message queue)
  • 构建实时流式应用程序,对这些流数据进行转换或者影响。 (类似流处理

3、核心概念

  • Kafka作为一个集群,运行在一台或者多台服务器上.
  • Kafka 通过 topic 对存储的流数据进行分类。
  • 每条记录中包含一个key,一个value和一个timestamp(时间戳)

4、四个核心 API

  • Producer API :允许应用发布一条流记录到一个或多个主题。
  • Consumer API :允许应用订阅一个或多个主题,并处理流记录。
  • Streams API :允许应用作为一个流处理器,从一个或多个主题那里消费输入流,并将输出流输出到一个或多个输出主题,从而有效地讲输入流转换为输出流。
  • Connector API :允许将主题连接到已经存在的应用或者数据系统,以构建并允许可重用的生产者或消费者。例如,一个关系型数据库的连接器可能捕获到一张表的每一次变更。

以上四个API分别对应:发布、订阅、转换处理、从第三方采集数据。

二、主题和日志(Topics and Logs)(工作原理)

Topic 就是数据主题,是数据记录发布的地方,可以用来区分业务系统。Kafka中的Topics总是多订阅者模式,一个topic可以拥有一个或者多个消费者来订阅它的数据。

对于每一个topic, Kafka集群都会维持一个分区日志,如图所示,

每个分区都是一个有序的、不可变的记录序列,而且记录会不断的被追加,一条记录就是一个结构化的提交日志(a structured commit log)。

分区中的每条记录都被分配了一个连续的id号,这个id号被叫做offset(偏移量),这个偏移量唯一的标识出分区中的每条记录。(PS:如果把分区比作数据库表的话,那么偏移量就是主键)

Kafka集群持久化所有已发布的记录,无论它们有没有被消费,记录被保留的时间是可以配置的。例如,如果保留策略被设置为两天,那么在记录发布后的两天内,可以使用它,之后将其丢弃以释放空间。在对数据大小方面,Kafka的性能是高效的,恒定常量级的,因此长时间存储数据不是问题。

事实上,在每一个消费者中唯一保存的元数据是offset(偏移量)即消费在log中的位置.偏移量由消费者所控制:通常在读取记录后,消费者会以线性的方式增加偏移量,但是实际上,由于这个位置由消费者控制,所以消费者可以采用任何顺序来消费记录。例如,一个消费者可以重置到一个旧的偏移量,从而重新处理过去的数据;也可以跳过最近的记录,从"现在"开始消费。

这些细节说明Kafka 消费者是非常廉价的—消费者的增加和减少,对集群或者其他消费者没有多大的影响。比如,你可以使用命令行工具,对一些topic内容执行 tail操作,并不会影响已存在的消费者消费数据。

日志中的 partition(分区)的用途

  • 日志大小超过了单台服务器的限制,允许日志进行扩展。每个单独的分区都必须受限于主机的文件限制,不过一个主题可能有多个分区,因此可以处理无限量的数据。
  • 可以作为并行的单元集,并行处理,提高效率。

三、分布式

日志的分区partition (分布)在Kafka集群的服务器上。每个服务器在处理数据和请求时,共享这些分区。每一个分区都会在已配置的服务器上进行备份,确保容错性。

每个分区都有一台 server 作为 “leader”,零台或者多台server作为 follwers 。leader server 处理一切对 partition (分区)的读写请求,而follwers只需被动的同步leader上的数据。当leader宕机了,followers 中的一台服务器会自动成为新的 leader。

每台 server 都会成为某些分区的 leader 和某些分区的 follower,因此集群的负载是平衡的。

四、生产者

生产者发布数据到它们选择的主题中。生产者负责选择将记录投递到哪个主题的哪个分区中。要做这件事情,可以简单地用循环方式以到达负载均衡,或者根据一些语义分区函数(比如:基于记录中的某些key)来完成。

五、消费者(消费组)

消费者使用一个 消费组 名称来进行标识,发布到topic中的每条记录被分配给订阅消费组中的一个消费者实例。消费者实例可以分布在多个进程中或者多个机器上。

如果所有的消费者实例在同一消费组中,消息记录会负载平衡到每一个消费者实例。

如果所有的消费者实例在不同的消费组中,每条消息记录会广播到所有的消费者进程。

如图,这个 Kafka 集群有两台 server 的,四个分区(p0-p3)和两个消费者组。消费组A有两个消费者,消费组B有四个消费者。

通常情况下,每个 topic 都会有一些消费组,一个消费组对应一个"逻辑订阅者"。一个消费组由许多消费者实例组成,便于扩展和容错。这就是发布和订阅的概念,只不过订阅者是一组消费者而不是单个的进程。

在Kafka中实现消费的方式是将日志中的分区划分到每一个消费者实例上,以便在任何时间,每个实例都是分区唯一的消费者。维护消费组中的消费关系由Kafka协议动态处理。如果新的实例加入组,他们将从组中其他成员处接管一些 partition 分区;如果一个实例消失,拥有的分区将被分发到剩余的实例。

Kafka 只保证分区内的记录是有序的,而不保证主题中不同分区的顺序。每个 partition 分区按照key值排序足以满足大多数应用程序的需求。但如果你需要总记录在所有记录的上面,可使用仅有一个分区的主题来实现,这意味着每个消费者组只有一个消费者进程。

六、核心概念

1、Broker

Kafka 集群包含一个或多个服务器,服务器节点称为broker。broker存储topic的数据。

2、Topic(主题)(重点)

Topic 就是数据主题,是数据记录发布的地方,可以用来区分业务系统。Kafka中的Topics总是多订阅者模式,一个topic可以拥有一个或者多个消费者来订阅它的数据。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

3、Partition(分区)(重点)

topic中的数据分割为一个或多个partition。每个topic至少有一个partition。每个partition中的数据使用多个segment文件存储。partition中的数据是有序的,不同partition间的数据丢失了数据的顺序。如果topic有多个partition,消费数据时就不能保证数据的顺序。在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。

4、Producer(生产者)

生产者即数据的发布者,该角色将消息发布到Kafka的topic中。broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的segment文件中。生产者发送的消息,存储到一个partition中,生产者也可以指定数据存储的partition。

5、Consumer(消费者)

消费者可以从broker中读取数据。消费者可以消费多个topic中的数据。

6、Consumer Group(消费组)(重点)

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。如果所有的消费者实例在同一消费组中,消息记录会负载平衡到每一个消费者实例。如果所有的消费者实例在不同的消费组中,每条消息记录会广播到所有的消费者进程。

7、Leader

每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。每台 server 都会成为某些分区的 leader 和某些分区的 follower,因此集群的负载是平衡的。

8、Follower

Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。如果Leader失效,则从Follower中选举出一个新的Leader。当Follower与Leader挂掉、卡住或者同步太慢,leader会把这个follower从“in sync replicas”(ISR)列表中删除,重新创建一个Follower。

技术大咖秀 发布了125 篇原创文章 · 获赞 116 · 访问量 2万+ 私信 关注
来源:https://blog.csdn.net/shipfei_csdn/article/details/103901343
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

鲜花

握手

雷人

路过

鸡蛋

最新评论

QQ|Archiver|手机版|小黑屋|南华中天社区 ( 粤ICP备11019662号 )

GMT+8, 2020-8-5 21:15 , Processed in 0.229257 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部